Reduction of Attribute Space Dimensionality: the SOCRATES Method

نویسندگان

چکیده

The new SOCRATES (ShOrtening CRiteria and ATtributES) method for reducing the dimensionality of attribute space is described. In this method, a large number initial numerical and/or verbal characteristics objects are aggregated into single integral index or several composite indicators with small scales qualitative estimates. Multiattribute represented as multisets object properties. aggregation includes various methods transformation attributes their scales. Reducing shortening make it possible to simplify solution applied problems, in particular, problems multicriteria choice explain obtained results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Attribute Space Bias for Attribute Reduction

Attribute reduction is an important inductive learning issue addressed by the Rough Sets society. Most existing works on this issue use the minimal attribute bias, i.e., searching for reducts with the minimal number of attributes. But this bias does not work well for datasets where different attributes have different sizes of domains. In this paper, we propose a more reasonable strategy called ...

متن کامل

A logic method for efficient reduction of the space complexity of the attribute reduction problem

The goal of attribute reduction is to find a minimal subset (MS) R of the condition attribute set C of a dataset such that R has the same classification power as C. It was proved that the number of MSs for a dataset with n attributes may be as large as (nn/2) and the generation of all of them is an NP-hard problem. The main reason for this is the intractable space complexity of the conversion o...

متن کامل

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

Discriminative Dimensionality Reduction in Kernel Space

Modern nonlinear dimensionality reduction (DR) techniques enable an efficient visual data inspection in the form of scatter plots, but they suffer from the fact that DR is inherently ill-posed. Discriminative dimensionality reduction (DiDi) offers one remedy, since it allows a practitioner to identify what is relevant and what should be regarded as noise by means of auxiliary information such a...

متن کامل

Thresholding Method for Reduction of Dimensionality

Often recognition systems must be designed with a relatively small amount of training data. Plug-in test statistics suuer from large estimation errors, often causing the performance to degrade with increasing size of the measurement vector. Choosing a better test statistic or applying a method of dimensionality reduction are two possible solutions to the problem above. In this paper we consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific and Technical Information Processing

سال: 2021

ISSN: ['0147-6882', '1934-8118']

DOI: https://doi.org/10.3103/s0147688221050063